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It is shown that for each convex body A/Rn there exists a naturally defined
family GA/C(Sn&1) such that for every g # GA , and every convex function f : R � R
the mapping y [ �S n&1 f ( g(x)&( y, x) ) d_(x) has a minimizer which belongs to A.
As an application, approximation of convex bodies by balls with respect to Lp

metrics is discussed. � 1996 Academic Press, Inc.

1. Introduction

Let Kn be the family of all convex, compact and non-empty subsets of
Rn. As is well known, the Hausdorff distance between two members of Kn

can be described as the L� distance between the restrictions to the unit
sphere of their support functions. In the same way one can define other L p

metrics. These metrics have been discussed in various contexts by McClure
and Vitale [9, 17], Saint-Pierre [12], and Florian [5]. One can consider
the following problem: Given A # Kn, what can be said about single-point
sets which are the best approximations to A in these L p metrics? One can
deduce immediately from the fact that L p spaces are uniformly convex,
whenever 1<p<�, that there exists a unique element mp(A) of Rn such
that its singleton is the solution to the above problem. Now, a more
detailed question arises: What can be said about the location of mp(A)
relative to A? One of our goals is to prove that actually mp(A) is an
element of A. This result will follow from our Theorem 3.2 which seems to
be of some independent interest. For further information on the topic of
approximation of convex bodies the reader is referred to Gruber's surveys
[7, 8].

In the sequel, every mapping from Kn into Rn which is a selection will
be called a centre. Three kinds of centres are widely known and have
numerous applications; these are the baricentre, the Steiner point (see:
[6, 10, 11], and especially [12] which is an excellent monograph on this
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subject) and the Chebyshev centre. We define the baricentre of A # Kn by
the formula

b(A)=(1�m(A)) |
A

x dm(x),

where m is the Lebesgue measure on the minimal flat containing A. Recall
that the Chebyshev centre of A is the centre of the smallest ball which con-
tains A (Note that it is unique as the underlying norm is the Euclidean
norm.) It was observed by Saint-Pierre [12, Sect. 4] that the Steiner point
of A coincides with the point m2(A). In turn, the Chebyshev centre of A is
equal to the point m�(A). As we shall see in Section 4, these centres play
an important role in certain asymptotic formulae. A formula of that kind
appears in [1] and [12]. It is shown that if Bn is the unit ball centered at
the origin in Rn then limt � � b(A+tBn)=m2(A). Let us notice that this
result is an immediate consequence of the Steiner formula for the so-called
quermassvectors (see [14]).

2. Preliminaries

A function .: Rn � R is subadditive if for any x, y # Rn,

.(x+y)�.(x)+.( y).

It is positively homogeneous if for every x # Rn and every : # [0, +�),

.(:x)=:.(x).

The support function hA of A # Kn is defined by the formula

hA(x)=sup[(a, x) : a # A],

where ( } , } ) stands for the usual scalar product. The restriction of hA to
the unit sphere is denoted by h� A .

Obviously, support functions are subadditive and positively homo-
geneous. As is well known, and easily deducible from the Hahn�Banach
theorem, the converse is also true.

Suppose that # is a function defined on some subset M of Rn. We shall
say that the growth of # is majorized by a support function . on M if for any
x, y # M,

#(x)&#( y)�.(x&y).
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Lemma 2.1. For M/Rn, let #: M � R be a mapping whose growth is
majorized by a support function hA on M. Then

1. there exists an extension of # to the whole Rn whose growth is
majorized by hA on Rn; such an extension is given by the formula

#~ (x)=sup[#(m)&hA(m&x): m # M];

2. #~ is differentiable almost everywhere and the gradient {#~ (x) belongs
to A, whenever it exists.

Proof. 1. We shall follow the classical proof of the Hahn�Banach
theorem. The majorized growth of # and the subadditivity of hA imply that

#(z)&#( y)�hA(z&x)+hA(x&y)

or equivalently

#(z)&hA(z&x)�#( y)+hA(x&y).

The latter inequality assures us that #~ is well defined. Let us fix two points
u, v # Rn and =>0. By the definition of #~ , there exists m # M such that

#~ (u)&=<#(m)&hA(m&u).

Hence

#~ (u)&#~ (v)<#(m)&hA(m&u)+=&(#(m)&hA(m&v))�hA(u&v)+=.

2. Since #~ has its growth majorized by a support function, it must be
Lipschitz continuous. By Rademacher's theorem (see e.g. [13] for a simple
proof), #~ is differentiable almost everywhere. Suppose that x is a point of
differentiability of #~ , and observe that by the homogeneity of hA ,

#~ (x+ty)&#~ (x)
t

�hA ( y),

whenever y # Rn and t>0. It now is easily seen that letting t tend to 0 one
obtains

({#~ (x), y) �hA( y). K

Given a set X and a function f : X � R. The set of all minimizers of f will
be denoted by Min f, that is, Min f=[ y : f ( y)�f (x), for every x # X ]. If f
has exactly one minimizer then it is denoted by min f.
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Proposition 2.2. Suppose that there are given a directed set 4, a com-
pact topological space X and a net of continuous functions f* : X � R, * # 4.
If f* , * # 4, converges uniformly to f : X � R then Min f* converges to Min f
in the upper topology, that is, for every open set V/X which contains Min f
there exists *0 such that Min f*/V, whenever *>*0 .

3. A Location Theorem

In order to prove Theorem 3.2, we will need the following version of the
Gauss�Green formula.

Proposition 3.1. Let S n&1 be the unit sphere in Rn, _ the Lebesgue
measure on Sn&1, and dx the infinitesimal element of the n-dimensional
volume. Suppose that g : Bn � R is a Lipschitz continuous function. Then its
gradient {g is defined almost everywhere. Moreover, {g is Lebesgue
measurable and essentially bounded on Bn, and

|
Sn&1

g(x) x d_(x)=|
B n

{g(x) dx.

Remarks 3.1. 1. Proposition 3.1 slightly differs from those versions of
the Gauss�Green formula which are usually reproduced in textbooks, for
there is most often assumed that the function g is at least continuously dif-
ferentiable. However, because of the simplicity of the domain of integration
considered here, the ordinary proof of the Gauss�Green formula (see e.g.
[15, Ch. VI, 97] or [2, ch. 5]) still works with rather mild modifications.
On the other hand, there exists a very general theorem due to Federer (see
[3] or [4]) which implies our proposition.

2. In the context of centres, formula of that kind has been used in
[11] and [16].

Theorem 3.2. Suppose that there are given a convex function f : R � R,
a set A # Kn, a function #: S n&1 � R whose growth is majorized by hA and
a function F: Rn � R defined by the formula

F( y)=|
Sn&1

f (#(x)&( y, x) ) d_(x). (V)

Then Min F & A{<. A fortiori, if f is strictly convex then F has a unique
minimizer which belongs to A.

Proof. The theorem will be proved in three steps. First, it is proved that
the theorem holds true if f is assumed to be twice continuously differen-
tiable and strictly convex. Second, it is shown that the first step combined
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with an approximation argument yields the result for all strictly convex
functions. Finally, another approximation argument is used to obtain the
theorem in full generality.

Step 1. Observe that strict convexity of f implies strict convexity of
F ; that is, for any x, y # Rn such that x{y, and * # (0, 1) one has
F(*x+(1&*)y)<*F(x)+(1&*) F( y). By differentiability of f,

{F( y)=&|
Sn&1

f $(#(x)&( y, x) ) x d_(x).

Let us recall that for any differentiable convex function k: Rn � R we have
Min k=[ y: {k( y)=0]. Hence it remains to prove that there exists an
y # A for which {F( y)=0. Define an auxiliary function I( y, x) by the
formula

I( y, x)=#~ (x)&( y, x) ,

where #~ is the extension of # ensured by Lemma 2.1. Since for each y # Rn

the function x [ f (I( y, x)) is Lipschitz continuous on Bn, it follows from
Proposition 3.1 that

&{F( y)=|
B n

f "(I( y, x))({#~ (x)&y) dx. (VV)

For y # Rn, define

L( y)=|
B n

f "(I( y, x)) dx.

Since f is convex, L is nonnegative. Suppose now that L( y)=0 for some
y # Rn. By strict convexity of f, there exists a constant c such that for every
x # Bn

c=I( y, x)=#~ (x)&( y, x).

Consequently, y={#~ (x) for almost all x # Bn, and {F( y)=0. Moreover,
from Proposition 2.1 it follows that y # A. Hence we may further assume
that the mapping L has only positive values. In such a case, (VV) can be
expressed in the following manner

&
{F( y)
L( y)

+y=|
Bn

{#~ (x)
f "(I( y, x)

L( y)
dx. (-)
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Let T( y) denote the left hand side of (-). Clearly, T is a continuous map
from Rn into Rn. Since the function x [ f $(I( y, x))�L( y) is a density of a
probability measure, and {#~ maps Bn into A, the right hand side of (-)
reads that T maps Rn into A. Now it is clear that Brouwer's theorem can
be applied in order to draw the conclusion that T has a fixed point. This
fixed point is an element of A and, at the same time, an argument for which
the gradient {F equals 0.

Step 2. Now, we drop the hypothesis that f is differentiable and
assume only strict convexity of f. As is well known, there exists an infinitely
differentiable function \ which satisfies the following three conditions:

(a) \(s)�0, whenever s # R;

(b) �+�
&� \(t) dt=1;

(c) supp \=[t : \(t){0]/[&1, 1].

It is a standard observation that every function \r , r>0, defined by the
formula

\r(s)=(1�r) \(s�r)

fulfils the first two conditions and that supp \r/[&r, r]. Let fr denotes
the convolution of f and \r , that is,

fr(s)=|
+�

&�
f (s&t) \r(t) dt.

Let us recall that any such fr is infinitely differentiable and that the net fr ,
r>0, converges uniformly to f on compact sets as r � 0. Furthermore, it is
obvious that all fr are strictly convex. Let us replace f by fr and F by Fr

in (V). Convergence of fr implies that Fr � F uniformly on compact sets.
Let = be a positive number large enough to ensure A/=Bn. Clearly, Fr � F
uniformly on =Bn. By Step 1, min Fr belongs to A for each r. Subsequently,
by Proposition 2.2, the restriction of F to =Bn has its minimizer belonging
to A. Since = is arbitrary, one deduces immediately that this minimizer is
actually a minimizer of F.

Step 3. If f is not strictly convex then for every positive c one can
define the function fc ,

fc(s)= f (s)+cs2,

It is obvious that all fc are strictly convex, and that fc � f uniformly on
compact sets as c � 0. Define Fc assuming in (V) F=Fc and f =fc . As we
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have already proved that min Fc # A, it follows from Proposition 2.2, in
much the same way as in Step 2, that for all sufficiently large =,
Min F |=B & A{<. Hence Min F & A{<. K

4. Centres

Let C and D be two elements of Kn. Recall that

H�(C, D)=inf[=: D/C+=Bn, C/D+=Bn].

is the Hausdorff distance between C and D. It can also be written by the
use of support functions

H�(C, D)=sup[ |h� C (x)&h� D(x)| : x # Sn&1]=|h� C&h� D |�

The L p metrics, 1�p<�, on Kn are defined as follows

Hp(C, D)=\|Sn&1
|h� C (x)&h� D(x))| p d_~ (x)+

1�p

,

where _~ is the normalized Lebesgue measure on S n&1. It is known (see
[17]) that all the metrics Hp , 1�p��, define the same topology on Kn.
We observe that the Ho� lder inequality implies

Hp(C, D)�Hq(C, D), (--)

whenever p�q. Moreover, elementary calculation shows that

lim
p � �

Hp(C, D)=H�(C, D).

Let us fix some A # Kn and define a mapping G( y)=Hp(A, [ y]), where
p is greater than one. Obviously, G has a unique minimizer. Recall that
this minimizer is denoted by mp(A). It is evident that the function
F( y)=(G( y)) p has the same minimizer as G. Observe that F satisfies the
formula (V) of Theorem 3.2. provided that f (s)=(1�}) |s| p, where } equals
the area of the unit sphere, and #=h� A . Thus we have proved that mp(A)
is an element of A. In fact, we can obtain even more

Theorem 4.1. Given A # Kn, t # R and p # (1, �]. Let Gp, t denote the
function

Gp, t( y)={Hp(A+tBn, [ y]),
Hp(A, y+tBn),

for t�0
for t<0.
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There exists a unique element mp, t(A) # Rn which minimizes Gp, t ; this
element belongs to A.

Proof. First we consider the case p # (1, �). Let us define
F( y)=(Gp, t( y)) p. Similarly as above, one observes that F satisfies (V) if it
is assumed that f (s)=(1�}) |s+t| p, and #=h� A . The uniqueness follows
immediately from the strict convexity of f. The case p=� is a simple con-
sequence of the uniqueness of the Chebyshev center and the identity

m�=m�, t (�)

which holds for all reals and can be easily derived from the definition of the
Chebyshev center. K

Theorem 4.2. For every A # Kn and every t # Rn the mapping (1, �] %

p [ mp, t(A) is continuous. In particular,

lim
p � �

mp, t(A)=m�(A).

Proof. Let us fix p # (1, �]. It is clear that the functions Gp, t converge
pointwise to Gp0 , t as p � p0 . Furthermore, we infer from (--) that these
functions converge monotonically. By a well known theorem of Dini on
monotone convergence of functions on compact sets, Gp, t converges
uniformly to Gp0 , t on A. Now, the conclusion follows from Proposition 2.2,
the preceding theorem, and the identity (�) K

Theorem 4.3. For every A # Kn and every p # (1, �),

lim
t � \�

mp, t(A)=m2(A)

Proof. To simplify the notation, let us write yt instead of mp, t(A). Let
us define the functions F, f and # as in the proof of Theorem 4.1. It is clear
that #~ =hA and that I( y, x)=hA (x)&( y, x) where I is as defined in the
proof of Theorem 3.2. Elementary calculation shows that f is twice con-
tinuously differentiable except, possibly, at s=&t. As yt # A, it follows that
there exists $�0 such that 0�I( yt , x)�$, whenever t # R and x # Bn. Thus
the expression f "(I( yt , x)) makes sens for all sufficiently large |t| and
x # Bn. This observation enables us to employ the identity (-). Since yt is
a minimizer of F, one has {F( yt)=0. By (-), we obtain

yt=|
B n

{hA(x)
f "(I( yt , x))

L( yt)
dx.

Now, notice that the mappings (u, v) [ f "(I( yt , u))�f "(I( yt , v)) converge
uniformly on Bn_Bn to the constant function 1 as |t | � �. Consequently,
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the mappings x [ f "(I( yt , x))�L( yt) converge uniformly on Bn to the con-
stant function 1�&, where & denotes the volume of the unit ball. Thus we
have

lim
t � �

yt=(1�&) |
B n

{hA(x) dx.

Obviously, the right hand side is the Steiner point of the set A (compare:
[16, 92] and [11, 96]). K
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